# Spectrum Math Grade 4 Chapter 6 Lesson 14 Answer Key Fractions as Multiples

This handy Spectrum Math Grade 4 Answer Key Chapter 6 Lesson 6.14 Fractions as Multiples provides detailed answers for the workbook questions.

## Spectrum Math Grade 4 Chapter 6 Lesson 6.14 Fractions as Multiples Answers Key

$$\frac{4}{5}$$ = 4 × ($$\frac{1}{5}$$)
$$\frac{1}{5}$$ + $$\frac{1}{5}$$ + $$\frac{1}{5}$$ + $$\frac{1}{5}$$ + $$\frac{1}{5}$$ = $$\frac{4}{5}$$

Write the addition equation and multiplication equation for each fraction.

Question 1.
$$\frac{6}{10}$$ = _____________ × (__________)
OR
6 x $$\frac{1}{10}$$
OR
$$\frac{1}{10}$$ + $$\frac{1}{10}$$ + $$\frac{1}{10}$$ + $$\frac{1}{10}$$ $$\frac{1}{10}$$ + $$\frac{1}{10}$$

Explanation:
Given,
$$\frac{6}{10}$$
As multiplication is a repeated addition, each repeated addition can be written in two ways:
$$\frac{6}{10}$$ = 6 × ($$\frac{1}{10}$$)
$$\frac{1}{10}$$ + $$\frac{1}{10}$$ + $$\frac{1}{10}$$ + $$\frac{1}{10}$$ $$\frac{1}{10}$$ + $$\frac{1}{10}$$ = $$\frac{6}{10}$$

Question 2.
$$\frac{2}{8}$$ = _____________ × (__________)
OR
2 x $$\frac{1}{8}$$
OR
$$\frac{1}{8}$$ + $$\frac{1}{8}$$

Explanation:
Given,
$$\frac{2}{8}$$
As multiplication is a repeated addition, each repeated addition can be written in two ways:
$$\frac{2}{8}$$ = 2 × ($$\frac{1}{8}$$)
$$\frac{1}{8}$$ + $$\frac{1}{8}$$ = $$\frac{2}{8}$$

Question 3.
$$\frac{2}{4}$$ = _____________ × (__________)
OR
2 x $$\frac{1}{4}$$
OR
$$\frac{1}{4}$$ + $$\frac{1}{4}$$

Explanation:
Given,
$$\frac{2}{4}$$
As multiplication is a repeated addition, each repeated addition can be written in two ways:
$$\frac{2}{4}$$ = 2 × ($$\frac{1}{4}$$)
$$\frac{1}{4}$$ + $$\frac{1}{4}$$ = $$\frac{2}{4}$$

Question 4.
$$\frac{7}{3}$$ = _____________ × (__________)
OR
7 x $$\frac{1}{3}$$
OR
$$\frac{1}{3}$$ + $$\frac{1}{3}$$ + $$\frac{1}{3}$$ + $$\frac{1}{3}$$ $$\frac{1}{3}$$ + $$\frac{1}{3}$$ + $$\frac{1}{3}$$

Explanation:
Given,
$$\frac{7}{3}$$
As multiplication is a repeated addition, each repeated addition can be written in two ways:
$$\frac{7}{3}$$ = 7 × ($$\frac{1}{3}$$)
$$\frac{1}{3}$$ + $$\frac{1}{3}$$ + $$\frac{1}{3}$$ + $$\frac{1}{3}$$ $$\frac{1}{3}$$ + $$\frac{1}{3}$$ + $$\frac{1}{3}$$ = $$\frac{7}{3}$$

Question 5.
$$\frac{10}{6}$$ = _____________ × (__________)
OR
10 x $$\frac{1}{6}$$
OR
$$\frac{1}{6}$$ + $$\frac{1}{6}$$ + $$\frac{1}{6}$$ + $$\frac{1}{6}$$ + $$\frac{1}{6}$$ + $$\frac{1}{6}$$ + $$\frac{1}{6}$$ + $$\frac{1}{6}$$ $$\frac{1}{6}$$ + $$\frac{1}{6}$$

Explanation:
Given,
$$\frac{10}{6}$$
As multiplication is a repeated addition, each repeated addition can be written in two ways:
$$\frac{10}{6}$$ = 10 × ($$\frac{1}{6}$$)
$$\frac{1}{6}$$ + $$\frac{1}{6}$$ + $$\frac{1}{6}$$ + $$\frac{1}{6}$$ + $$\frac{1}{6}$$ + $$\frac{1}{6}$$ + $$\frac{1}{6}$$ + $$\frac{1}{6}$$ $$\frac{1}{6}$$ + $$\frac{1}{6}$$ = $$\frac{10}{6}$$

Question 6.
$$\frac{5}{12}$$ = _____________ × (__________)
OR
5$$\frac{1}{12}$$
$$\frac{1}{12}$$ + $$\frac{1}{12}$$ + $$\frac{1}{12}$$ + $$\frac{1}{12}$$ + $$\frac{1}{12}$$
$$\frac{5}{12}$$
$$\frac{5}{12}$$ = 5 × ($$\frac{1}{12}$$)
$$\frac{1}{12}$$ + $$\frac{1}{12}$$ + $$\frac{1}{12}$$ + $$\frac{1}{12}$$ + $$\frac{1}{12}$$ = $$\frac{5}{12}$$